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Abstract—The popularity of the Twitter social networking site has
made it a target for social bots, which use increasingly-complex algo-
rithms to engage users and pretend to be humans. While much research
has studied how to identify such bots in the process of spam detection,
little research has looked at the other side of the question — detecting
users likely to be fooled by bots. In this paper, we examine a dataset
consisting of 610 users who were messaged by Twitter bots, and determine
which features describing these users were most helpful in predicting
whether or not they would interact with the bots (through replies
or following the bot). We then use six classifiers to build models for
predicting whether a given user will interact with the bot, both using
the selected features and using all features. We find that a users’ Klout
score, friends count, and followers count are most predictive of whether
a user will interact with a bot, and that the Random Forest algorithm
produces the best classifier, when used in conjunction with one of the
better feature ranking algorithms (although poor feature ranking can
actually make performance worse than no feature ranking). Overall,
these results show promise for helping understand which users are most
vulnerable to social bots.

Index Terms—Twitter, social bots, feature selection

I. INTRODUCTION

Twitter is one of the most popular social networks, despite —

or possibly because of — its limitations. User posts are limited to

140 characters, and the privacy model is extremely limited: a whole

account is either private (only sharing posts with friends) or public,

and most users choose “public,” sharing all of their content freely with

the world. In addition, following a user is not necessarily reciprocal:

because all posts are public, following a user merely subscribes a

follower to their public posts, and thus users are encouraged to

follow individuals they do not know personally. This has led to many

celebrities using Twitter as a means of connecting with their fans,

because they can update their millions of fans with a single 140-

character tweet (Twitter’s term for a post).

Although the open nature of Twitter can mitigate some privacy

concerns (since users are aware that everything posted is public and

should hopefully act accordingly), this does not mean everything

is as it seems. Due to the site’s popularity, and especially due to

the culture of following individuals with interesting content, it has

become a major target for marketing and social manipulation. Spam

accounts post links to paid content, and users shill for companies

while pretending to be independent fans of the company. Moreover,

as users and Twitter itself become more aware of spam, automated

accounts are growing more intelligent, moving beyond simple reposts

of boilerplate ad content to attempt to engage with users. These

social bots pretend to be human in order to gain followers and replies

from their targets, and then exploit this trust to promote a product or

agenda.

These social bots have been studied in the context of spam

detection, so they may be filtered and removed from the site, but

in order for social bots to prosper users must be fooled by them.

Less work has gone into what traits make users susceptible to these

bots, however. In the present work, we present a novel case study with

610 users, all of whom were contacted by a Twitter bot through an @

message. Some users interacted with the bot (either through replying

directly or through following the bot), and a number of features (both

demographic and linguistic) were culled from the users’ profiles.

We then endeavored to understand how these features contribute to

whether a user will interact with a bot.

Two collections of experiments are performed, both employing a

set of ten feature rankers to order the features in terms of importance.

In the first experiment, the top features from the various ranked

lists were compared, to discover which features were most useful

in predicting an individual’s vulnerable to interaction with a bot.

Here, we found that a user’s Klout score and total number of

friends (individuals the user both followed and was followed by)

were the strongest predictors, while other features indicative of

social engagement also ranked highly as useful for predicting bot

interaction.

In our second experiment, we used six different machine learning

classifiers to build models for predicting this interaction, either using

all of the features or only using those selected by the feature rankers

(with six different feature subset sizes: 5, 10, 15, 20, 25, and 30). For

this second experiment, we found that the Random Forest classifier

gave the greatest performance, in particular when used with the

Geometric Mean ranker; however, other choices of ranker actually

performed worse than the Random Forest classifier applied with

all features. This demonstrates the importance of choosing both a

classifier (learner) and ranker which match one another and which

maximize performance.

Overall, we find that user traits can be used to identify individuals

more likely to interact with bots, and that this information can both

be used to study how these traits directly affect vulnerability and how

they may be use to build classification models. More study will be

needed to analyze these connections, however.

This paper is organized as follows: Section II contains related work

on the topics of bots, Twitter spam detection, and user vulnerability.

Section III reviews the different techniques employed in this paper,

including the classification learners, the rankers, and the performance

metrics and evaluation scheme. Section IV discusses the case study

and the data in more detail. We present our results in Section V,

both for the feature selection alone and when using the classifiers.

Finally, Section VI includes our conclusions and directions for future

research.

II. RELATED WORK

Social bots are an evolution of the chatterbot, a program which

attempts to have a conversation with humans [13]. An idealized

chatterbot would be able to pass the Turing test [40], meaning that a

human conversing with the bot could not tell if their conversational

partner was a program or a human. Research in chatterbots has

advanced greatly since the original Turing test was proposed, with

highlights ranging from the ELIZA bot developed in 1966 to simulate

a human therapist [49] to the development of the Artificial Intelli-

gence Markup Language (AIML) in 2001 [46] to facilitate the easy
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construction of XML-based rules for generating realistic chatterbots,

including the A.L.I.C.E bot which won the Loebner Prize for artificial

intelligences in 2000, 2001, and 2004 [27].

While computers have become more adept at communicating with

humans, humans have found even more ways to communicate with

each other. Social networks have become a major driving force in

our society, and a great deal of research has focused on how such

networks have evolved over time [15], [22] and how these have

influenced youth culture [12], [26]. One particularly important social

network is Twitter, which combines the traditional aspect of users

sharing details of their lives with one another and the culture of

celebrity, where famous users attract followers in order to promote

their personal brands [23]. These two competing aspects have led to

increased focus on Twitter influence: how much one user can affect

others [2], [8], [9], and how different user networks are connected to

spread information [5], [35]. While much of this research has focused

on human interaction, automated agents have also begun to join the

network.

As with any social network, the large number of attentive users

poses an attractive target for marketers who wish to create buzz for a

product. While some of this Twitter-based marketing employs actual

humans who attempt to engage with the community and foster good-

will [39], the problem of spam (automatically-generated advertising

messages) has become endemic, and is now a fact of life for Twitter

users [17], [38]. As a result of this, more research has been conducted

in detecting spam on Twitter, with techniques ranging from traditional

classifiers [29], to considering the network relationships between

the sender and receiver [32], [47], to evaluation of the URLs being

promoted by the spammers [37]. Nonetheless, spam continues to be

a problem on Twitter [16], [28]

An increasing number of organizations are using software tools to

post directly to Twitter, both for legitimate and malicious (e.g., spam-

generating) ends. These bots vary in sophistication, from those which

simply cross-post content from an existing news site to those which

use human intervention to create more realistic content [10]. While

some research on these social bots has focused on other networks

such as Facebook [4], [7], it has become fairly simple to construct

these bots for Twitter as well [30]. Detecting these more complex

bots remains a challenge [1]

To promote the study of Twitter Bots, in 2011 the Web Ecology

Project began their Socialbot Challenge [20], wherein three teams

competed to create bot clusters which could elicit real users to follow

and reply to their bots. Each team could create as many bots as it

wished, but only one would be counted for scoring, and once released

the bots needed to run on their own without human intervention

(although after five days, the teams were allowed to change the code

for their bots to refine their strategies). The winning team employed

a strategy based on many bots which simply followed the lead bot to

lend it credibility, along with a dictionary of questions and responses

to simulate interactivity. Over the course of the two-week challenge,

this team was able to accumulate approximate 8 followers per day

and 14 replies per day, with the latter metric far outweighing the

other two competitors.

Although much research into Twitter bots has focused on describ-

ing and identifying the bots themselves, Wagner et al. [44] realized

that the Socialbot Challenge 2011 data provided a window into the

other side of the equation: the users who chose to follow bots.

Targeted users were identified as “susceptible” if they interacted with

one of the bots within the 14-day window of the competition, and

their degree of susceptibility was based on how quickly they became

“infected.” Three categories of features were extracted from each

user, to predict their susceptibility: 70 linguistic features (which used

the Linguistics Inquiry and Word Count (LIWC) [36] package to

extract word-use dimensions from users’ tweets), nine network-based

features using three different forms of graph generation (a follower-

based directed graph, an undirected retweet-based graph, and a raw

interaction graph), and 13 behavioral features based on the scope and

range of tweet contents.

Using this dataset and six classification learners (Partial Least-

Squares Regression, Generalized Boosted Regression, k-Nearest

Neighbors, Elastic-Net Regularized Generalized Linear Models, Ran-

dom Forest, and Regression Trees), the authors were able to achieve

an overall accuracy of 0.71. They also found that the most impor-

tant features were the user’s out-degree in the interaction network

(meaning they frequently retweet, follow, or otherwise interact with

other users), along with other features pertaining to interaction. Other

features suggest these users are more open and social than typical

users, using words describing emotions and sentence structures

pertaining to describing their activities. Attempts to build a more

full regression model did not yield much success, however.

The present work continues the research begun by Wagner et al.,

exploring a new dataset with more instances (610 users, of whom

123 interacted with the bot, compared with the earlier dataset which

only has 374 instances and 76 which interacted with the bot) and a

wider range of classification learners from more families (focused on

different forms of machine learning, rather than simply regression).

In addition, the present study considers feature selection, the use of

algorithms which identify the top features and enable models to be

built using just these features. These facilitate both building more

accurate models and identifying which traits of users puts them at

risk for infection by social bots.

III. METHODS

Throughout this paper, we employ six classification learners, and

ten filter-based feature rankers. In this section, we describe how each

of our techniques work.

A. Learners

A classification learner is an algorithm which builds a model

using labeled training data (e.g., data with known class labels), and

then evaluates the model using unlabeled test data (in practice, the

test data’s labels are known, but are only used when comparing

the predicted labels with the actual labels). In this paper, six di-

verse learners are used: 5-Nearest Neighbor (5-NN) [33], Logistic

Regression (LR) [24], Multi-Layer Perceptron (MLP) [19], Naı̈ve

Bayes (NB) [33], Random Forest with 100 trees (RF100) [6], and

Support Vector Machines (SVM) [25]. Because these are each well-

understood techniques, we provide only a brief discussion of how they

predict class labels; an interested reader may consult the references

for further information. All models were built using the WEKA

Machine Learning Toolkit [18], using the default parameter values

unless otherwise noted.

5-Nearest Neighbor classifies instances by finding the five closest

instances to the test instance and comparing the total weight of the

instances from each class (using 1/Distance as the weighting factor).

Logistic Regression builds a simple logistic model using all of the

features in order to predict the class variable. Multilayer Perceptron

builds an artificial neural network with three nodes in its single hidden

layer, and 10% of the data held aside in order to validate when to stop

the back-propagation procedure. Naı̈ve Bayes uses Bayes’ Theorem

to determine the posterior probability of membership in a given class

based on the values of the various features, assuming that all of the
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features are independent of one another. Random Forest builds a set

of unpruned decision trees (100 trees in this study) with each tree

using only a randomly-chosen subset of the original features and a

randomly-bootstrapped copy of the data for model-building, and then

the final model classifies an instance based on the majority vote of

the decision trees. Finally, Support Vector Machines finds a maximal-

margin hyperplane which cuts through the space of instances (such

that instances on one side are in one class and those on the other side

are in the other class), choosing the plane which preserves the greatest

distance between each of the classes. In this paper, for SVM the

complexity constant “c” was set to 5.0 and the “buildLogisticModels”

parameter was set to “true.”

B. Feature Selection

Due to the large number of features in this dataset, we experiment

using filter-based feature rankers, which rank features based on their

relevance to the class attribute. These are called filter-based because

they do not employ a classifier (as wrapper-based methods do), and

are rankers because they rate features independently (rather than in

groups as with subset evaluation). The ten feature rankers studied

come from three broad groupings: three commonly-used feature

selection methods (Chi-Squared [50], Information Gain [50], and

ReliefF [21]), five threshold-based feature selection (TBFS) methods

(Deviance [43], Geometric Mean [43], Mutual Information [3], Area

Under the ROC (Receiver Operating Characteristic) Curve [11],

Area Under the Precision-Recall Curve (PRC) [31]), and two first-

order-statistics based methods (Signal-To-Noise [48] and Significance

Analysis of Microarrays [41]). All of these techniques will be briefly

described below.

1) Commonly-used feature ranking techniques: The first three

feature selection techniques were chosen due to being commonly-

used in the data mining and machine learning literature. Chi-Squared

is a metric based on the χ2 distribution, which is how the feature

and class values would be distributed if there were no correlation

whatsoever between the two. How far the actual distribution is from

the theoretical no-correlation distribution shows how well the feature

is correlated with the class. Information Gain is an entropy-based

performance metric, based on the amount of entropy present in

the partitioning of the instances based on their class values. The

amount by which this entropy is reduced when the instances are first

partitioned according to their feature values is how much information

is gained when using that feature. ReliefF is an instance-based

performance metric based on the idea of picking a random instance

and comparing its feature values with those from its nearest hit (the

closest instance in the same class) and its nearest miss (the closest

instance in the same class). Features increase their score by being

close in value in the nearest hit, but are penalized for being close in

value to the nearest miss.

2) TBFS-based feature ranking techniques: Threshold-based fea-

ture ranking is a class of feature ranking techniques recently de-

veloped by our research group [14], [42]. The premise of TBFS is

to consider only the two-attribute dataset consisting of the feature

being examined and the class variable (which must be a binary class

variable). The feature being studied is then normalized so its values

lie between 0 and 1. This normalized feature value is then treated as a

posterior probability, and is used to “predict” the class (according to

two different rules, depending on whether higher values are associated

with one class or the other). These predictions are evaluated using

different classifier performance metrics for different threshold values

(cutoff points where the posterior is interpreted as one class or

the other), and the threshold (and direction) which optimizes the

performance metric is used to calculate the quality of the feature

in question. Note that although classifier performance metrics are

used to evaluate the features, no actual classifiers are built; only the

normalized feature values are examined. The insight is that highly-

predictive features should have values which correlate with the class

in much the same way that a high-performance classifier’s posterior

probabilities will; thus, the same performance metrics may be used.

Note also that additional classifier performance metrics could be used

with the TBFS framework.

As noted, five different performance metrics were employed in con-

junction with the TBFS technique. Deviance is based on the minimum

residual sums (sum of squared errors) found in the partitioning based

on the threshold t. Because it is a measure of error, lower values of

Deviance are better. Geometric Mean is the square root of the product

of the true positive rate (number of true positives / total number of

positive instances) and the true negative rate (number of true negatives

/ total number of negative instances). Mutual Information finds the

mutual dependence of the two variables in question (the feature and

the class variable), showing how much information about one can

be used to reduce the uncertainty of the other. Area under the ROC

(Receiver Operating Characteristic) Curve is a measure of the total

area under the ROC curve; this curve plots the trade-off between the

true positive rate and the false positive rate, for all values of the

threshold t. It can be used to give a balanced view of how these two

factors relate without picking a single threshold level. Finally, PRC

(Area Under the Precision-Recall Curve) is similar, but considers the

trade-off between precision (number of true positives / total number

of instances predicted to be positive) and recall (the same as true

positive rate).

3) First-order-statistics based feature ranking techniques: The

final two feature ranking techniques are called “first-order-statistics

based” because they both rely on first-order statistics such as mean

and standard deviation. Signal-To-Noise is based on the ratio of the

signal versus the noise. In particular, it is the ratio of the difference

between the feature’s mean values for each class over the sum of the

feature’s standard deviations on each class. Significance Analysis of

Microarrays (SAM) uses an attribute-specific t-test for each feature

to measure the strength of the correlation between each independent

feature and the class attribute. Specifically, the difference in the

feature’s mean values in the two classes is divided by the sum of

the overall standard deviation and an exchangability constant which

helps prevent features with small standard deviations from having an

abnormally large SAM score. Although SAM was developed for the

domain of bioinformatics, it is a general technique which may be

applied to any application domain.

4) Feature Subset Sizes: Following feature ranking, for our clas-

sification experiments we created feature subsets of varying sizes by

choosing the top N values from each ranked list. In our experiments,

N values included 5, 10, 15, 20, 25, and 30. These values were

chosen to give good coverage, and because preliminary experiments

demonstrated diminishing returns for larger feature subset sizes.

C. Performance Metrics and Cross-Validation

To evaluate the results of our models, we used the AUC perfor-

mance metric. This value, the area under the ROC curve, is calculated

just as the ROC feature ranker is (as discussed in Section III-B) The

distinction is that when used as a ranker, the values of the feature to

be ranked are considered as the posterior probabilities for determining

true positives and false positives. When AUC is used as a performance

metric, however, the actual posterior probability from the classifier is
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used. To make these more distinct, in this paper we use ROC to refer

to the ranker and AUC to refer to the overall performance metric.

When evaluating models, cross-validation was used. This is a

process which divides the data into N equal-size subsets (folds),

builds the model on N − 1 of these, and tests the model on the N th

fold, called the hold-out fold. This process is repeated N times, so

that each fold is used as the hold-out fold exactly once. The results

are combined across all the N runs to define the performance metrics.

In this experiment, we used ten-fold cross-validation (e.g., N = 10).

In addition, we performed the entire cross-validation process a total

of five times, and all results presented are the average across these

five runs of ten-fold cross-validation.

IV. CASE STUDY

The case study for this experiment grew out of work performed

by the Online Privacy Foundation1, an organization dedicated to

understanding how users interact with social networks and the privacy

implications of their actions. In a previous experiment, called the

Twitter Big Five Experiment [34], [45], a number of users were

solicited to take an online personality survey, rating these users

according to the Big Five personality index (Agreeableness, Con-

scientiousness, Extroversion, Openness, Neuroticism) and the Dark

Triad of negative personality traits (Narcissism, Machiavellianism,

and Psychopathy). In addition, two classes of features were extracted

from each individual’s profile: demographic features and linguistic

features. Demographic features consisted of numeric information

which could be directly extracted from the profile, or generated

automatically using this numeric content: this includes facts like the

number of friends and followers, the number of statuses posted by the

user, the length of their self-description, and so on. One demographic

feature of special note is an individual’s Klout score. This is a

measure created by an independent company, Klout.com, to evaluate

a person’s overall reach in terms of social network connections. In

the original Twitter Big Five Experiment, 20 demographic features

were used, but for the present social bot experiment, there were 22.

The remaining features were extracted using the Linguistic Inquiry

and Word Count package [36], which divides words into many

different linguistic categories to represent different types of language

use, and then counts how often a given individual uses words in

each category. In addition, certain forms of punctuation and part of

speech are counted to evaluate how these reflect on a user’s writing

style. These counts were collected across all of a user’s tweets, to

generate an overall picture of their personal writing style. A total of

70 linguistic features were extracted for each user.

Following the Twitter Big Five Experiment, a second experiment

was performed on the same users, to study their response to social

bots. The original pool of subjects was reduced to 610 users, who

were then divided into two groups to be studied separately (although

the procedure for both was identical, and as such these groups are

pooled for the present work). For both groups, a Twitter bot was

created which performed two tasks: it would post tweets meant to be

representative of what normal Twitter users would post, and it would

ask specific questions of the users in the experimental group, using

Twitter’s @ syntax to send these messages directly at the target users.

A user was considered to have interacted with the bot if they replied

to this message or if they subsequently chose to follow the bot. Only

users who were part of the original Twitter Big Five Experiment were

considered, even if other users followed (or sent messages to) the bot

of their own accord. Thus, for each user, the 102 features were paired

1https://www.onlineprivacyfoundation.org/

with a single binary class variable: whether or not that user interacted

with the bot. The goal of our experiments was to understand how

these features could be used to predict this interaction, both on their

own and when used to augment a classification learner for building

a prediction model.

V. RESULTS

Two collections of experiments were conducted in this research:

first, the ten feature rankers were used on the full dataset to discover

the attributes most directly related to the question of predicting an

individual’s likelihood to interact with a social bot, and second, we

built classification models (both with and without feature selection)

to actually perform this prediction. These results are presented in the

following two sections.

A. Feature Ranking

Table I presents a list of all features which are within the top

four of any of the ranked lists (produced by the ten feature rankers),

along with where each of those features was on the respective lists.

We chose to limit ourselves to the top four from each ranked feature

list to reduce the scope of this table: increasing to larger numbers

would have added more features which appear in only a handful

of lists without affecting the conclusions for those which appear in

many lists. Note that all features will eventually appear on all lists,

so a value of “-” only means that the given feature was not within

the top four when using that feature ranker. In this table, the features

themselves are sorted based on how many different lists they appeared

upon (which is itself presented in the final column), and within equal-

count features, by how close to the top each feature appeared in its

respective lists.

These thirteen features represent the following traits of each user:

a) kloutscore: This is a metric calculated by the private com-

pany Klout.com, which collects information from a user’s Facebook,

Twitter, G+, LinkedIn, and other social networking profiles to deter-

mine their overall social influence.

b) friends count: This is the number of individuals who the

user in question follows (the user’s out-degree).

c) followers count: This is the number of individuals who are

following the user (the user’s in-degree).

d) sexual: This is an LIWC feature which counts the number

of sexual references in the user’s tweets.

e) Parenth: This LIWC feature counts the number of parenthe-

ses in the user’s tweets.

f) notifications: This reflects whether or not the user has noti-

fications enabled.

g) Percent FF: This is the percentage of tweets the user posted

including the phrase “Follow Friday” or the corresponding hashtag

(#FF), representing participation in Twitter’s “Follow Friday” events.

h) log status: This is the natural logarithm of the total number

of statuses.

i) WC: This is the overall word count of all of the user’s tweets.

j) geo enabled: This is whether or not the user has chosen to

add their location to tweets.

k) Desc10: This is a binary feature (hence 1 or 0) reflecting

whether or not the user has posted a description of themselves.

l) Comma: This is the LIWC feature reflecting how often

commas are found in the user’s tweets.
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Feature
Feature Ranking Technique Total

CS IG RF Dev GM MI ROC PRC S2N SAM Lists
kloutscore 2 2 - 1 1 1 1 - 1 1 8

friends count 1 1 - - 2 2 2 1 3 - 7
followers count 3 3 - - 3 4 3 2 - - 6

sexual - - - 3 - - 4 - 4 3 4
Parenth 4 4 - 4 - - - - - - 3

notifications - - 2 - - - - - - 2 2
Percent FF - - - 2 - 3 - - - - 2
log status - - - - - - - 3 2 - 2

WC - - 4 - - - - - - 4 2
geo enabled - - 1 - - - - - - - 1

Desc10 - - 3 - - - - - - - 1
Comma - - - - 4 - - - - - 1

statuses count - - - - - - - 4 - - 1

TABLE I: Placement of features within top 4 of each ranked list

m) statuses count: This is a raw count (without using the

natural logarithm function) of the user’s statuses.

Overall, we see that the kloutscore and number of friends are

the strongest predictors of whether or not an individual will interact

with a social bot: these appear within the top four features of eight

and seven (respectively) of our ten feature ranking techniques, with

kloutscore being the top feature six times and number of friends being

the top feature three times. It makes sense that these two features

are at the top, because they both reflect involvement with social

networking in general: through Klout.com’s calculation of social

influence, and through the number of individuals who are followed

by the user in question. Individuals who are highly engaged in social

networking would seem to be more likely to interact with an unknown

user (such as a social bot) even if this user might have imperfect

grammar or word use.

It is interesting to note, however, that despite these features

appearing on top so often, the RF ranker does not score either of

these features within its top four, while PRC chooses friends count

but not kloutscore and both Dev and SAM choose kloutscore but

not friends count. This demonstrates that even when a feature seems

to have strong correlation with the class in question, not all feature

ranking techniques will agree on it.

Additional features which are predictive of interaction with social

bots include followers count, sexual, and Parenth. The first of these

goes along with the same ideas as kloutscore and friends count: indi-

viduals who are more engaged in social networking are more likely to

interact with social bots. The latter two are more interesting, however.

For the sexual feature, we found that users who use more sexual

language and terminology are more likely to interact with social bots.

On the other hand, users who used more parenthesis in their writing

were less likely to interact with bots. This may relate to the concept

of openness and forthright speaking, as opposed to complex sentence

constructions which employ parenthesis. Individuals who are more

open to new experiences (and who are perhaps less likely to use

complex sentence structures which bots find difficult to replicate) are

perhaps more interested in interacting with an “individual” who is

actually a bot.

Overall, we see that a wide range of features are important for

predicting interaction with social bots, but that some features are

more important than others. This justifies the idea that classification

models (which make predictions based on many features) will give

more useful results than statistical correlations which only consider

a single feature paired with the class value, and that feature selection

can help improve performance by removing those features which

aren’t contributing to the model.

B. Classification

Our classification experiments consisted of using our six learners

(5-NN, LR, MLP, NB, RF100, and SVM) both on their own (without

feature selection) and in conjunction with the ten feature ranking

algorithms presented earlier (CS, IG, RF, Dev, GM, MI, ROC, PRC,

S2N, and SAM). In all cases, we performed five runs of ten-fold

cross-validation. For the experiments using feature selection, the

feature ranker was applied to the nine training folds, the top features

were selected (with subset sizes of 5, 10, 15, 20, 25, and 30), and

these features were used to build a model from the training folds

which would be evaluated on the test fold. Errors on the test folds

were collected together to create a single performance metric for the

entire run of cross-validation, rather than simply averaging the results

across the test folds. Overall, with five runs, six learners, ten rankers,

and six feature subset sizes, we have 30 results using no feature

selection and 1800 results which use feature selection. All results are

presented using the AUC performance metric.

Due to the number of results, especially for when using feature

selection, we present these in two ways: averaged over all the learners

(showing each ranker separately), and averaged over all rankers

(showing each learner separately). In both cases the results with no

feature selection are presented at the end, in the “No FS” column.

Table II shows the results for each learner (e.g., averaged across

all rankers), while Table III shows the results for each ranker (e.g.,

averaged across all learners). In both tables, the best performance

for a given feature subset size is printed in bold, while the worst

results for that subset size are in italics. Note that for Table III, the

final column only contains a single value because without feature

selection, the choice of ranker is meaningless. This value is the

average performance across all of the no-feature-selection models.

One important note for Tables II and III is that due to computa-

tional constraints, we were unable to build a model which used the

RF100 learner, the RF ranker, and feature subset size 5. Thus, all

averages do not include this combination, which will slightly change

the value for the RF100-subset size 5 combination in Table II and the

RF-subset size 5 combination in Table III. We feel that this limitation

does not meaningfully affect our conclusions.

Looking at the results in terms of the learners (Table II), we see

that RF100 is the best learner across the board, for all feature subset

sizes as well as for no feature selection. 5-NN, on the other hand,

is the worst learner for all subset sizes aside from feature subset

size 15 (where NB is the worst learner). LR is the second-best

learner when feature selection is employed, although SVM is second-

best without feature selection (despite usually being fourth-best with

feature selection). The effectiveness of RF100, the only ensemble-
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Choice of Feature Subset Size
No FS

Learner 5 10 15 20 25 30
5-NN 0.55644 0.57336 0.57924 0.58051 0.58549 0.58941 0.56801
LR 0.60660 0.62565 0.63600 0.64430 0.64994 0.65262 0.66909

MLP 0.59115 0.60779 0.61376 0.62031 0.62590 0.62414 0.58508
NB 0.57791 0.57755 0.57647 0.58432 0.59216 0.59445 0.57591

RF100 0.60764 0.63320 0.64782 0.65795 0.66362 0.66811 0.68028
SVM 0.57282 0.58459 0.59542 0.60172 0.60765 0.61418 0.67697

TABLE II: AUC Averaged Across All Choices of Ranker

Choice of Feature Subset Size
No FS

Ranker 5 10 15 20 25 30
CS 0.57887 0.58971 0.58959 0.60485 0.60830 0.61414

0.62589

IG 0.57987 0.59018 0.59088 0.60362 0.60918 0.61488
RF 0.54936 0.56670 0.58134 0.58863 0.60217 0.60733
Dev 0.59418 0.60978 0.61343 0.61612 0.62163 0.62641
GM 0.58977 0.60717 0.61993 0.63551 0.64375 0.64367
MI 0.59168 0.61758 0.61742 0.62055 0.62544 0.62786

ROC 0.58876 0.61664 0.63354 0.62831 0.63406 0.63620
PRC 0.58170 0.58773 0.60822 0.62386 0.62817 0.63073
S2N 0.59160 0.62455 0.62789 0.63156 0.63961 0.63636
SAM 0.59875 0.59354 0.59895 0.59550 0.59563 0.60061

TABLE III: AUC Averaged Across All Choices of Learner

Choice of Feature Subset Size
No FS

Ranker 5 10 15 20 25 30
CS 0.61618 0.64053 0.65066 0.66152 0.66356 0.65854

0.68028

IG 0.61818 0.64107 0.65355 0.65300 0.66381 0.66087
RF - 0.59460 0.61726 0.62893 0.63110 0.64017
Dev 0.58567 0.60364 0.62150 0.62915 0.62927 0.63583
GM 0.62319 0.66123 0.67211 0.69551 0.69754 0.70272
MI 0.62683 0.67447 0.66208 0.66943 0.68477 0.68204

ROC 0.61318 0.64032 0.66812 0.68208 0.67818 0.68370
PRC 0.58234 0.62745 0.65044 0.67464 0.68143 0.68766
S2N 0.60598 0.65202 0.66413 0.65516 0.67064 0.67337
SAM 0.59718 0.59665 0.61833 0.63008 0.63587 0.65614

TABLE IV: AUC: Only for RF100 Learner

based learner used in this study, demonstrates why ensembles are

important, especially since it performs well both with and without

feature selection, a trait no other learner shares.

From this table, we also see that generally, increasing the number

of features selected improves the performance of the classification

models. This is true for all six learners across all six feature subset

sizes tested. Notably, however, some learners perform better with

feature selection than they do when using all features (5-NN, MLP,

and NB), while others perform best with no feature selection at

all (LR, RF100, and SVM). Specifically, the best learners were the

ones which showed decreased performance with feature selection.

This might suggest that feature selection cannot be used to improve

performance in this application domain, but further analysis of the

individual feature rankers shows a different story.

Table III presents the results for each feature ranker individually,

averaged across all six learners. We see a wide range of performance

here, with no ranker clearly showing superior performance in all

cases: GM is best for the larger feature subset sizes (20 and above),

but SAM, S2N, and ROC were best when using 5, 10, and 15

features, respectively. Overall, RF was the worst ranker in general,

being on the bottom for all subset sizes other than 25 and 30 (where

SAM showed worse performance). It is especially interesting to note

that the average performance without feature selection falls in the

middle of the various models which use feature selection (and feature

subset size 30, as we again see that increased feature subset size

improves performance). This shows that for some rankers, using

feature selection improves performance, while for other rankers it

reduces it. This can partially explain the results we saw in Table II:

for each learner, some rankers will improve performance while others

will reduce it, and thus the overall question of whether feature ranking

will help that learner depends on the balance of these two groups of

learners.

Because RF100 is the top learner overall, we wished to examine

it more closely to see how the choice of feature ranker affects its

performance. Table IV presents the results from this learner alone,

without averaging over any other learners. We see that as in Table III,

for the larger feature subset sizes GM is the best ranker, but here MI

(which never previously showed superlative performance) gives the

best models for feature subset sizes 5 and 10. RF and Dev show the

same performance patterns as before, however, with RF being the

worst for subset sizes 20 and below, while Dev is worst for sizes

25 and 30. (Due to the missing results for RF at subset size 5, we

cannot be certain if the results here are worse than those for PRC

at that subset size.) The most significant observation from this table,

however, is that with the right choice of feature ranker, using feature

ranking will improve (or at least not harm) performance: GM gives

an AUC result over 0.02 better than no feature selection, while the

MI, PRC, and ROC rankers are also able to improve results.

Thus, the misleading results from Table II are explained: with the

right choice of feature ranking algorithm, a model using a reduced

feature subset can give equal or greater performance than a model

which employed all features, while both using less computational
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time (due to employing fewer than 30% of the original features)

and also helping practitioners understand which features are most

important for the problem at hand.

VI. CONCLUSION

Social bots are becoming more common on sites such as Twitter,

and are used to influence opinions both politically and commercially.

While much research has considered how to identify these bots and

remove them from the site, less work has examined the other side

of the question: what makes a user likely to fall for a bot and be

influenced by it. In this paper, we analyzed a dataset consisting of

610 Twitter users, all of whom were contacted by a social bot. From

each user we extracted both demographic and linguistic features, and

the goal of this research was to understand how these features related

to a user’s vulnerability to bots: that is, whether they chose to reply

to or follow the bot.

We performed two related experiments to better understand this

connection. In the first experiment, we performed feature ranking

using ten feature ranking algorithms (Chi-Squared, Information Gain,

ReliefF, Deviance, Geometric Mean, Mutual Information, Area Under

the ROC Curve, Area Under the PRC Curve, Signal-To-Noise, and

Significance Analysis of Microarrays) and examined those features

which were consistently at the top of the list (specifically, within

the top four features). We found that Klout score, total number of

friends, and total number of followers are the strongest predictors

of whether an individual will interact with a bot, appearing in seven

(or in the case of number of followers, six) of the ten ranked lists.

Beyond these features, the remaining features which appeared in two

or more lists all represented individuals who are more connected

with social media, with a higher number of posts, notifications, and

description lengths. These also included two of the linguistic features,

which demonstrated that users were more likely to interact with bots

if they use a greater amount of sexual language but a lesser amount

of parenthesis. Overall, this paints a picture of a user who is engaged

with Twitter and is more open about their experiences, while perhaps

not using certain linguistic constructs which employ parenthesis.

In our second experiment, we used six classification learners

(5-Nearest Neighbor, Logistic Regression, Multi-Layer Perceptron,

Naı̈ve Bayes, Random Forest with 100 trees, and Support Vector

Machines) to build models of the users in order to predict whether

or not they would interact with the bot. These models were built

both with and without feature selection, and when feature selection

was employed the above ten rankers were used with six feature

subset sizes (5, 10, 15, 20, 25, 30). Here, we found that RF100,

the only ensemble learner, performed best both with and without

feature selection, giving AUC performance values of 0.70272 (with

the best feature ranker) and 0.68028 respectively, with SVM being

second-place without feature selection (AUC 0.67697) and MLP

being second-place with feature selection (AUC 0.65338, averaged

across all rankers). In both cases, 5-NN produced the worst models.

Comparing with and without feature selection for a single learner, the

results varied strongly depending on the choice of feature selection

algorithm: a good choice could improve AUC performance by as

much as 0.02, while a bad choice could reduce it by at least as much.

Finally, overall we found that larger feature subset sizes performed

better, with size 30 often performing better than any smaller sizes.

However, because using all features produced worse results for some

rankers, we know that some amount of feature selection is improving

results.

Overall, we find that the features we evaluated in this study can

help explain which users will choose to interact with social bots.

Some features make sense on their own and paint a picture of the

type of user who will most likely interact with a bot, while using

more features together can help build a model which will predict

user interaction. This research will help users and security experts

alike understand who is most vulnerable and perhaps most in need

of additional aid for dealing with social bots.

Future research can continue in a number of directions. First of all,

larger feature subset sizes can be evaluated, to determine the ideal

number of features for building a model. In addition, the linguistic

features in this study were evaluated across all of a user’s tweets,

regardless of whether they were general status messages, personal

messages to other users, or retweets; future research could consider

these separately. Finally, because this research was conducted as a

follow-up of the Twitter Big Five Experiment, the personality types

of these users is known, and further work could consider how these

relate to an individual’s likelihood of interacting with a social bot.
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